• Faster Zero-shot Multi-modal Entity Linking via Visual#2;Linguistic Representation

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要: Multi-modal entity linking plays a crucial role in a wide range of knowledge-based modal-fusion tasks, i.e., multi-modal retrieval and multi-modal event extraction. We introduce the new ZEro-shot Multi-modal Entity Linking (ZEMEL) task, the format is similar to multi-modal entity linking, but multi-modal mentions are linked to unseen entities in the knowledge graph, and the purpose of zero-shot setting is to realize robust linking in highly specialized domains. Simultaneously, the inference efficiency of existing models is low when there are many candidate entities. On this account, we propose a novel model that leverages visual#2; linguistic representation through the co-attentional mechanism to deal with the ZEMEL task, considering the trade-off between performance and efficiency of the model. We also build a dataset named ZEMELD for the new task, which contains multi-modal data resources collected from Wikipedia, and we annotate the entities as ground truth. Extensive experimental results on the dataset show that our proposed model is effective as it significantly improves the precision from 68.93% to 82.62% comparing with baselines in the ZEMEL task.

  • Visual Entity Linking via Multi-modal Learning

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要: Existing visual scene understanding methods mainly focus on identifying coarse-grained concepts about the visual objects and their relationships, largely neglecting fine-grained scene understanding. In fact, many data-driven applications on the Web (e.g., news-reading and e-shopping) require accurate recognition of much less coarse concepts as entities and proper linking them to a knowledge graph (KG), which can take their performance to the next level. In light of this, in this paper, we identify a new research task: visual entity linking for fine-grained scene understanding. To accomplish the task, we first extract features of candidate entities from different modalities, i.e., visual features, textual features, and KG features. Then, we design a deep modal-attention neural network-based learning-to-rank method which aggregates all features and maps visual objects to the entities in KG. Extensive experimental results on the newly constructed dataset show that our proposed method is effective as it significantly improves the accuracy performance from 66.46% to 83.16% compared with baselines.

  • OpenKG Chain: A Blockchain Infrastructure for Open Knowledge Graphs

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-25 合作期刊: 《数据智能(英文)》

    摘要: The early concept of knowledge graph originates from the idea of the semantic Web, which aims at using structured graphs to model the knowledge of the world and record the relationships that exist between things. Currently publishing knowledge bases as open data on the Web has gained significant attention. In China, Chinese Information Processing Society of China (CIPS) launched the OpenKG in 2015 to foster the development of Chinese Open Knowledge Graphs. Unlike existing open knowledge-based programs, OpenKG chain is envisioned as a blockchain-based open knowledge infrastructure. This article introduces the first attempt at the implementation of sharing knowledge graphs on OpenKG chain, a blockchain-based trust network. We have completed the test of the underlying blockchain platform, and the on-chain test of OpenKGs data set and tool set sharing as well as fine-grained knowledge crowdsourcing at the triple level. We have also proposed novel definitions: K-Point and OpenKG Token, which can be considered to be a measurement of knowledge value and user value. 1,033 knowledge contributors have been involved in two months of testing on the blockchain, and the cumulative number of on-chain recordings triggered by real knowledge consumers has reached 550,000 with an average daily peak value of more than 10,000. For the first time, we have tested and realized on-chain sharing of knowledge at entity/triple granularity level. At present, all operations on the data sets and tool sets at OpenKG.CN, as well as the triplets at OpenBase, are recorded on the chain, and corresponding value will also be generated and assigned in a trusted mode. Via this effort, OpenKG chain looks forward to providing a more credible and traceable knowledge-sharing platform for the knowledge graph community.